

engineering com PDH FOR THE PROFESSIONAL	HEAT TRANSFER TERMINOLOGY (CONT'D)	Heat Transfer M01-301 1 PDH		
Heat Flux	x:			
 The rate of heat transfer is commonly expressed in Btu/hr, and is often represented by the symbol Q. 				
 The heat transfer rate per unit area, or heat flux, is commonly denoted by <i>Q</i>^{''}, and has units of Btu/hr-ft². 				
 The heat flux is determined by using the following formula: 				
	$\dot{Q}^{\prime\prime} = \frac{\dot{Q}}{A} \tag{1}$			
Thermal	Conductivity:			
 The heat transfer characteristics of a solid material are measured by a property called the thermal conductivity (k), expressed in Btu/hr-ft-°F. 				
 It is a m conduct 	neasure of a substance's ability to transfer heat through a soli ion.	d by		
The the temperature	ermal conductivity of most liquids and solids varies ature. For vapors, it depends upon pressure.	with		
© Elie Tawil 2021	www.cedengineering.com	9		

CEED engineering com PDH FOR THE PROFESSIONAL	CONDUCTION HEAT TRANS	SFER (CONT'D) Heat Transfe M01-30 1 PD	er)1 /H		
Fourier's Law of Conduction:					
The law, in its equation form, is usually used in its rectangular or cylindrical form (pipes and cylinders), both of which are presented below:					
Rectangular	$\dot{Q} = k A \left(\frac{\Delta T}{\Delta x} \right)$	(4)			
Cylindrical	$\dot{Q} = k A \left(\frac{\Delta T}{\Delta r} \right)$	(5)			
Where,					
<i>ऐ</i> ∶ rate of heat transfer (Btu/hr)					
A: cross-sectional area of heat transfer (ft ²)					
Δx : thickness of slab (ft)					
Δr : thickness of cylindrical wall (ft)					
ΔT : temperature difference (°F)					
k: thermal conductivity of slab (Btu/ft-hr-°F)					
© Elie Tawil 2021		w.cedengineering.com	16		

